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Kinks of arbitrary width
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The influence of external potentials on kink width is investigated. The stability of a single kink and kink-
antikink solutions in the presence of an external force is proved. The consequences of stability for defect
production during a quench are discussed.
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I. INTRODUCTION

Recently much attention has been focused on the for
tion of topological defects in the condensed matter syste
Continuous phase transitions are still the most interestin
this context. The mechanism of the creation of topologi
solutions during the phase transition was first described
Kibble and Zurek@1#. They noticed that as a consequence
critical slowing down the relaxation time diverges and p
turbations of the order parameter propagate very slowly
the time of the propagation of density perturbations over
correlated regions becomes comparable with the relaxa
time, the field configuration in the system freezes-in. Imm
diately after transition, the system regains the capacity
respond to the change of external parameters. The correla
length at that instant~freeze-out instant! sets the size of the
region over which the same vacuum can be selected. He
it sets the resulting density of the topological defects. T
correlation length at that instant describes the size of
defect and therefore the density of defects is limited by th
size at freeze-out time. This scenario was confirmed in
merical experiments@2#.

This description mainly concerns pure systems driven
the temperature noise. On the other hand, we know th
quite reasonable class of the systems is inevitably popul
by the impurities and admixtures. The most representa
examples are liquid crystals and superconducting layers.
superconductors of the second type seem to be particu
useful in testing the influence of impurities on defect form
tion. On the other hand, the transitions in liquid crystals c
be only approximately described using the Kibble-Zurek s
nario. The main reason lies in the existence of a small ene
barrier near the critical temperature that makes these tra
tions belong to the so-called weak first-order transitions. T
considerations of the influence of impurities on defect p
duction were performed in Ref.@3#. It was proved that the
number density of produced defects can be determined
only by the correlation length, but also by the characteris
length scales of the impurity distributions. These resu
seem to be quite natural in the case of smooth, strong
long range impurity potentials. The long range of the ext
nal potential means that the mean distance between the z
of the order parameter generated by the impurity potentia
significantly larger than the correlation length itself.

The present paper aims at working out a intuition co
cerning the opposite regime. It is known that the num
density of produced kinks is limited by their size. In th
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following sections, using examples of exact solutions, it
shown that the external forces coming from the impurit
can squeeze the kink to an arbitrary size, leaving more ro
for the production of other kinks in its vicinity.

The paper is organized as follows. In the following se
tion, an exact squeezed kink solution in the presence of s
external force distribution is found. Section III contains t
stability analysis of the squeezed kink in the overdamp
Landau-Ginzburg model. The influence of the inertia for
on the stability of this solution is discussed in Sec. IV. T
late stage of the evolution of the kink network produc
during the transition in the presence of the external poten
is illustrated, using example of an exact kink-antikink so
tion, in Sec. V. The stability of this solution is investigated
Sec. VI. The concluding section contains remarks.

II. KINK SOLUTION OF AN ARBITRARY WIDTH

Let us consider an overdamped Landau-Ginzburg mo
in one spatial dimension,

G] tf~ t,x!5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!1D~x!, ~1!

where the quantityD(t,x) represents a deterministic forc
describing the existence of impurities or crystalline net in
substance. The static squeezed kinks are solutions of th
dinary nonlinear inhomogeneous equation

2]x
2f~x!2af~x!1lf3~x!5D~x!. ~2!

Let us choose the particular form of the force distribution

D~x!56AS a

l D 3/2 sinhb~x2x0!

cosh3b~x2x0!
, ~3!

whereAP@0,̀ ) describes the strength of the impurity forc
b[A(a/2)g andg[A11A/l. The kink solution of Eq.~2!
can be found with the help of the standard procedure@4#.
First, the order of this equation can be lowered by one,

@]xf~x!#25
l

2 S f2~x!2
a

l D 2

2V~x!, ~4!

where]xV(x)[2D(x)]xf(x). Next integration~depending
on the sign of the force distribution! leads to the squeeze
kink
©2002 The American Physical Society12-1
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fK sq~x2x0!5Aa

l
tanhSAa

2
g~x2x0! D , ~5!

or squeezed antikink solution

fA sq~x2x0!52Aa

l
tanhSAa

2
g~x2x0! D . ~6!

Because the field strength parameterA is larger or equal to
zero AP@0,̀ ), the squeezing parameterg belongs to the
interval gP@1,̀ ). In the absence of impuritiesA50, and
therefore the kink is unsqueezed, i.e.,g51 ~see Fig. 1!.

III. STABILITY OF THE KINK IN AN OVERDAMPED
f4 MODEL

Let us consider time dependent solutions of the ov
dampedf4 model,

G] tf~ t,x!5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!1D~x!. ~7!

We will focus on the small, time dependent, perturbations
the kink solutionf(t,x)5fK sq(x)1j(t,x). For simplicity,

FIG. 1. ~a! The squeezed kink solution~solid line! and the im-
purity force distribution~dashed line!. Parameters chosen in th
plot are the following:a52, l51, A53, x050, g52. ~b! The
kink solution in the absence of the external force~solid line! and the
squeezed kink solution~dashed line!. In the case of the squeeze
kink the amplitude of the external force is the following:A58 and
thereforeg53.
06611
r-

f

the kink under consideration is located at the zero of
coordinate systemx050. We will consider the perturbation
of the form j(t,x)5e2(V/G)tu(x), where a functionu(x)
vanishes at spatial infinity. In the linear approximation, t
equation of motion reduces to the eigenvalue problem

Ṽu~z!5]z
2u~z!12@123 tanh2~gz!#u~z!, ~8!

where we introduced a new variablez[A(a/2)x and res-
caled constantṼ[(2/a)V. We find the complete spectrum
of the kink excitations. The ground state is the following:

u0~x!5S g

GS a1
1

2
D

G~a!
A a

2p
D 1/2

1

coshaSAa

2
gxD ,

~9!

where

a[
1

2 SA11
24

g2
21D .

This solution exists for an arbitrary thin potential ‘‘hole,
i.e., for gP@1,̀ ). The notation refers to the fact that in th
absence of the external potential it corresponds to the z
mode@5#. The eigenvalueV05a/2(g2a22) is equal to zero
only for g51. We know that the zero mode is a manifes
tion of the translational symmetry of the system. In factV0
50 only if the system is not occupied by the impurities, i.
for A50. ForA.0, the ‘‘energy’’ of this mode is positive
V.0. The next eigenfunction is a breather mode,

u3~x!5S g~2a21!

GS a2
1

2
D

G~a21!
A a

2p
D 1/2

3

sinhSAa

2
gxD

coshaSAa

2
gxD . ~10!

This mode corresponds to the eigenvalueV35a/2@g2(3a
21)22#. The breather mode is separated by a gap from
ground state. This mode exists in the system only for
parameter rangegP@1,A3). Due to the fact thatg describes
the thickness of the potential distribution it is obvious th
this mode exists only for a sufficiently wide potential hol
Finally, we also obtain the continuous spectrum of the eig
functions
2-2
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uk~x!5S g

2p
Aa

2D 1/2

eikA(a/2)gx
2F1

3S 2a,a11;12 ik;

12tanhSAa

2
gxD

2
D ,

~11!

which corresponds to the eigenvaluesVk5a/2(41g2k2).
The modes of this type exists for arbitrary values of t
parametergP@1,̀ ). The bound states are normalized
unity and the states that correspond to the continuum s
trum are normalized so that

E
2`

`

dxuk* ~x!uk8~x!5d~k2k8!. ~12!

In the particular example ofa52 and considering the lack o
the external forceg51, we recover~up to normalization
factor! the result of Ref.@5#,

uk~x!5
1

A2p

11k2

~k1 i !~k12i !
eikxF11

3ik tanhx23 tanh2x

11k2 G .

We used the fact that for negative integers the expansio
the hypergeometric function 2F1„22,3;12 ik;@1
2tanh(x)#/2… consists of a finite number of terms.

IV. INFLUENCE OF THE INERTIA FORCE
ON KINK STABILITY

Let us also check the stability of the squeezed kink so
tion in the case of the equation of motion equipped with
term with the second time derivative of the order parame

m] t
2f~ t,x!1G] tf~ t,x!5]x

2f~ t,x!1af~ t,x!2lf3~ t,x!

1D~x!. ~13!

Similarly, as in the overdamped model, we consider sm
perturbations of the kinkf(t,x)5fK sq(x)1j(t,x) located
at the zero position of thex coordinate, i.e.,x050. We adopt
perturbations of the formj(t,x)5e2(v/G)tu(x). The number
of modes in this model is twice as much as in the ov
damped model. The modes in this model can be easily fou
One of the lowest exponents,

v0
65

G2

2m S 16A12
2am

G2
~g2a22!D , ~14!

corresponds to the zero mode of the overdamped model.
excitations of the kink are stable if Rev0

6>0. The zero
mode Rev0

650 is present only in the case where the ext
nal forceA50⇔g51 is absent. In this case, translation
invariance of the model is restored. If, however, the exter
force is present, theng.1 and for stability of the ‘‘zero’’
modes we need Re@A122am(g2a22)/G2#,1. This
inequality is satisfied ifg2a22.0. It is easy to check
06611
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that the last inequality is fulfilled always forg.1. Let
us also notice that if Im@A122am(g2a22)/G2#Þ0,
then the excitations oscillate with the frequen
G2A2am(g2a22)/G221/2m. The oscillations of ‘‘zero’’
modes always appear if (g2a22).G2/2am. The breather
modes correspond to the exponents

v3
65

G2

2m S 16A12
2am

G2
@g2~3a21!22# D . ~15!

The modes of this type are stable ifg2(3a21)22.0,
which is always satisfied forgP@1,A3). The modes that
belong to the continuous spectrum

vk
65

G2

2m S 16A12
2am

G2
~41g2k2!D ~16!

are also stable, because the inequality 41g2k2.0 is always
satisfied. Oscillations in these cases are also possible.

V. THE KINK-ANTIKINK STATIC SOLUTION

After the phase transitions in the pure medium the kin
antikink pairs annihilate, leaving the system free of any d
fects. The situation in the medium populated by the impu
ties can be completely different. In the present section,
exact kink-antikink solution is constructed. This simple e
ample shows that at the final stage of the phase transition
kinks and antikinks can form a stable network. All the kin
and antikinks belonging to this network are trapped by
impurities. Let us consider a time independent equation
motion,

2]x
2f~x!2af~x!1lf3~x!5D~x!. ~17!

We also choose the particular form of the impurity for
distribution:

D~x!5D1~x!1D2~x!1DI~x!. ~18!

The first part of this distribution responsible for squeezi
the vortex at the positionx0,

D1~x!5AS a

l D 3/2 sinhb~x2x0!

cosh3b~x2x0!
. ~19!

The second part squeezes antikink at the position2x0,

D2~x!52AS a

l D 3/2 sinhb~x1x0!

cosh3b~x1x0!
. ~20!

The last part of the force distribution is responsible for b
ancing the kink-antikink interaction,
2-3
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DI~x!53lS a

l D 3/2

@ tanhb~x2x0!2tanhb~x1x0!#

3@11tanhb~x2x0!2tanhb~x1x0!

2tanhb~x2x0!tanhb~x1x0!#. ~21!

In this setting the exact solution of the equation of moti
~17! is the following:

fD~x!5Aa

2F tanhSAa

2
g~x2x0! D

2tanhSAa

2
g~x1x0! D 11G . ~22!

This solution is just a superposition of the kink and antiki
located at the zeros of the force distribution

fD~x!5fK sq~x2x0!1fA sq~x1x0!1Aa

2
. ~23!

This solution represents the kink and antikink trapped by
neighboring impurity centers~see Fig. 2!.

VI. STABILITY OF THE KINK-ANTIKINK SOLUTION

We know that the squeezed kink as well as the squee
antikink are stable against small perturbations. The only
stability of the kink-antikink solution can be introduced by
change in their relative position. Because of the symmetry
the force distribution, we consider the following perturbati
of the kink-antikink solution:

fD~ t,x!'fD~x!1Aa

l
@FK

2 ~x2x0!1FA
2~x1x0!22#be~ t !,

~24!

wheree(t) is a small displacement of zeros from their po
tion predicted by the exact solution~22!. The approximate
form of the kink-antikink solution follows from the expan
sion of the squeezed kink

FIG. 2. The kink-antikink solution~dashed line! and the shape
of the force distribution~solid line!. Parameters chosen in this plo
are the following:a51, l51, x052, A51.
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fK sq@x2x02e~ t !#'fK sq~x2x0!1Aa

2
b@21

1FK
2 ~x2x0!#e~ t !, ~25!

and the squeezed antikink

fA sq@x1x01e~ t !#'fA sq~x1x0!1Aa

2
b@21

1FA
2~x1x0!#e~ t !, ~26!

where fK sq[A(a/2)FK , fA sq[A(a/2)FA . We consider
the complete dynamics given by the equation of mot
equipped with the inertia term

m] t
2fD~ t,x!1G] tfD~ t,x!5]x

2fD~ t,x!1afD~ t,x!

2lfD
3 ~ t,x!1D~x!. ~27!

First we perform expansion with respect to the small para
eter be!1. Next, we use the reflection symmetryx↔2x,
which allows us to restrict our considerations to perturb
tions of the position of the zero of the order parameter
cated in the neighborhood of the pointx0. At the final stage
of the calculus, we use approximate values of the functi
FK(0)'0 andFA(2x0)'21 in the vicinity of x0. The ef-
fective equation for the displacement of the positions of
ros of the scalar field is just the damped oscillator equat

m] t
2e~ t !1G] te~ t !1~2 b22a!e~ t !50. ~28!

The oscillations are stable if the parameter precedinge is
positive, i.e., ifb2.a/2. The last inequality can be written i
the form g.1, or equivalentlyA.0. We see that if the
configuration is placed in nonzero force then the exci
kink-antikink solution relaxes to the static one. The way
this relaxation is described by the textbook solution

e~ t !5Be2(G/2m)tcos~Ãt1w!, ~29!

where the frequency of the oscillations is give
by the potential parameter b as follows: Ã

5GA@4m(2 b22a)/G2#21/2m. The main reason of the
stabilization of the solution is an existence of the gradients
the potential in the vicinity of the positions of zeros of th
order parameter.

VII. REMARKS

We considered simple examples of the exact solutions
f4 in the presence of external forces. The solutions illustr
the main features of the defect production in the syste
populated by the impurities. We know that according to t
Zurek scenario the density of defects produced during
phase transition of the second type is mainly determined
the correlation length at the freeze-out time. The correlat
length at that instant of time intuitively describes the size
the defect, and therefore the number density of defect
limited by the possibility of holding the kinks in the un
volume. It was showed that the squeezed kink or antik
2-4
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solutions can have a size much smaller than the kink s
tions in the absence of the external forces. This seems t
a cause of the possible changes in the density of produ
defects.

On the other hand, one could raise the question
whether the existence of the squeezed solutions is a ge
feature of the model equipped in any external force distri
tion or is it only the unusual coincidence of the force dist
bution parameters? Let us assume that an arbitrary pote
is described by some unknown function. The force distrib
tion that is the first derivative of the potential disappears
extremes of the potential. On the other hand, in the vicin
of zeros of the force distribution nonzero gradients of
potential exists. These gradients corresponds to the fo
acting on kinks located in considered areas. In these sett
considerable amount of the knots of the force distribut
attract kinks. In a system equipped with a dissipation te
the movement of kinks, in the vicinity of the knot of th
force distribution, is damped. The final state of this evolut
is a static kinklike solution that differs from the squeez
kink by the local distortion of the profile of the squeez
kink. This distortion is a consequence of the difference
tween considered force distribution and the force distribut
described in Sec. II.

The second important feature of the influence of the
purities on the evolution of the defect network is exemplifi
by the kink-antikink solution. We know that in pure system
due to kink-antikink interactions at a sufficiently late insta
of time, the defects disappear from the system completely
the case of the system occupied by the impurities, due to
dissipation in the system, the surplus of the energy is lost
the system approaches the configuration that consists o
fects oscillating around the impurity centers.

We know that in pure systems, due to the annihilation
defects and antidefects, the initial density of the defect n
work is quickly reduced in time. In fact, at this stage
evolution the nucleation is also possible but it is determin
by the Boltzman factor@6#. In contradiction to pure systems
kinks produced in the systems populated by impurities
confined by the impurity centers and therefore may not d
appear from the system completely.

It is worth emphasizing that the considerations of t
paper concern the shape of possible field configuration
the order parameter in the broken symmetry phase of thef4

model and not the phase transition itself. Although the
namics of the transition introduces some complications
this picture, the main features of the presented picture
surely survive even if the complete transition process will
taken in to account.

The next issue concerns the possible applicability of
obtained results to two- and three-dimensional systems. F
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let us turn to the question whether the squeezed solut
exist in higher number of spatial dimensions. Ind spatial
dimensionsO(d) symmetric system is described by th
equations of motion

] t
2fa~ t,xW !1G] tf

a~ t,xW !5Dfa~ t,xW !1afa~ t,xW !

2l~fbfb!fa~ t,xW !. ~30!

We assume that the number of real scalar fields in the mo
is identical to a number of spatial dimensions, i.e.,a
51,2, . . . ,d. This assumption guarantees existence
hedgehog solutions in the model. In two dimensions,
have the vortex solutionfV

a5fV
a(x), and in three spatia

dimensions the global monopole solution existsfM
a

5fM
a (x). In the presence of the external force distributi

D a(t,xW ), this equation has the form

] t
2fa~ t,xW !1G] tf

a~ t,xW !5Dfa~ t,xW !1afa~ t,xW !

2l~fbfb!fa~ t,xW !1D a~ t,xW !.

~31!

In two dimensions, the squeezed vorticesfV sq
a (x)

5fV
a(gx) exist for particular force distribution of the impu

rity D a(x)5B(a/l2fV
bfV

b)fV
a . The explicit form of this

distribution is not known because we also do not know
explicit form of the vortex solution. The squeezing factor th
time is a combination of the constants characterizing the s
coupling of the scalar fields and the impurity strengthg
5g(B,l). Similarly, in the three-dimensional case, th
squeezed monopolesfM sq

a (x)5fM
a (gx) appear for the

force distributionD a(x)5B(a/l2fM
b fM

b )fM
a . Moreover,

the dynamics of these models is, as in one-dimensional
tems, determined by gradients of the potential. In two a
three dimensions we also can expect that gradients o
arbitrary potential could respond not only for confining, b
also for local change of the profile of the vortex or monopo
solutions. The dissipation in the system stabilizes the def
confined by the impurities. The number density of defe
trapped by the impurities in this case is determined by
average separation of the impurity centers. The presenc
the length scale of the impurity distribution in the numb
density formula of produced defects, in two and three spa
dimensions, can also be confirmed in the framework of
Kibble-Zurek scenario@7#.
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