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Kinks of arbitrary width
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The influence of external potentials on kink width is investigated. The stability of a single kink and kink-
antikink solutions in the presence of an external force is proved. The consequences of stability for defect
production during a quench are discussed.
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[. INTRODUCTION following sections, using examples of exact solutions, it is
shown that the external forces coming from the impurities
Recently much attention has been focused on the formasan squeeze the kink to an arbitrary size, leaving more room
tion of topological defects in the condensed matter systemdor the production of other kinks in its vicinity.
Continuous phase transitions are still the most interesting in The paper is organized as follows. In the following sec-
this context. The mechanism of the creation of topologicafion, an exact squeezed kink solution in the presence of some
solutions during the phase transition was first described bgxternal force distribution is found. Section Il contains the
Kibble and Zurel1]. They noticed that as a consequence ofStability analysis of the squeezed kink in the overdamped
critical S|0wing down the relaxation time diverges and per-LandaU-GianUrg model. The influence of the inertia force
turbations of the order parameter propagate very SIOle. 1on the Stabl“ty of this solution is discussed in Sec. IV. The
the time of the propagation of density perturbations over théate stage of the evolution of the kink network produced
correlated regions becomes comparable with the relaxatiofluring the transition in the presence of the external potential
time, the field configuration in the system freezes-in. Immeds illustrated, using example of an exact kink-antikink solu-
d|ate|y after transition, the system regains the Capacity téion, in Sec. V. The Stablllty of this solution is investigated in
respond to the change of external parameters. The correlaticteC- V1. The concluding section contains remarks.
length at that instanffreeze-out instantsets the size of the
region over which the same vacuum can be selected. Hence, |I. KINK SOLUTION OF AN ARBITRARY WIDTH
it sets the resulting density of the topological defects. The , )
correlation length at that instant describes the size of the L€t us consider an overdamped Landau-Ginzburg model
defect and therefore the density of defects is limited by theif? ©ne spatial dimension,
size at freeze-out time. This scenario was confirmed in nu- ) 3
merical experimentf2]. Lad(t,x) = d5d(t,X) +ad(t,x) =N ¢>(t,x) +D(x), (1)
This description mainly concerns pure systems driven by . L
the temperature noise. On the other hand, we know that ¥here the quantityD(t,x) represents a deterministic force
quite reasonable class of the systems is inevitably populategescribing the existence of impurities or crystalline net in the
by the impurities and admixtures. The most representativéubstance. The static squeezed kinks are solutions of the or-
examples are liquid crystals and superconducting layers. Thdinary nonlinear inhomogeneous equation
superconductors of the second type seem to be particularly )
useful in testing the influence of impurities on defect forma- — dyp(X) —ag(x) + A ¢3(x)=D(x). 2
tion. On the other hand, the transitions in liquid crystals can
be only approximately described using the Kibble-Zurek scelet us choose the particular form of the force distribution
nario. The main reason lies in the existence of a small energy
barrier near the critical temperature that makes these transi-
tions belong to the so-called weak first-order transitions. The D(x)=*A
considerations of the influence of impurities on defect pro-

duction were performed in Ref3]. It was proved that the . . .
number density of produced defects can be determined n&hereAe[O,oo) describes the strength of the impurity force,

only by the correlation length, but also by the characteristid®— V(&/2)y andy= y1+ A/\. The kink solution of Eq(2)
length” scales of the impurity distributions. These resultS@n e found with the help of the standard proceduie
seem to be quite natural in the case of smooth, strong anSt: the order of this equation can be lowered by one,
long range impurity potentials. The long range of the exter- \ a2
nal potential means that the mean distance between the zeros 2_ MM 2
of the order parameter generated by the impurity potential is [oxp()]"= 2 ( ¢°(x) )\) V), @
significantly larger than the correlation length itself.

The present paper aims at working out a intuition con-where 3,V(x)=2D(x)dy¢(x). Next integration(depending
cerning the opposite regime. It is known that the numbermon the sign of the force distributiorieads to the squeezed
density of produced kinks is limited by their size. In the kink
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FIG. 1. (a) The squeezed kink solutiosolid line) and the im-
purity force distribution(dashed ling Parameters chosen in this
plot are the followinga=2, A\=1, A=3, xq=0, y=2. (b) The
kink solution in the absence of the external fo¢selid line) and the
squeezed kink solutiofdashed ling In the case of the squeezed
kink the amplitude of the external force is the followind=8 and
thereforey=3.

a a
Pk sq(x_ Xo) = \/;tam—( \[EV(X—Xo)> ) )

or squeezed antikink solution

a a
DA s X—Xg) = — \[Xtan"( \/;Y(X_Xo))- (6)

Because the field strength parameteis larger or equal to
zero Ae[0»), the squeezing parameter belongs to the
interval ye[1,). In the absence of impuritied =0, and
therefore the kink is unsqueezed, i.e51 (see Fig. L

lIl. STABILITY OF THE KINK IN AN OVERDAMPED
¢* MODEL
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the kink under consideration is located at the zero of the
coordinate systemy=0. We will consider the perturbations
of the form &(t,x)=e~ (¥Diy(x), where a functionu(x)
vanishes at spatial infinity. In the linear approximation, the
equation of motion reduces to the eigenvalue problem

Qu(z)=02u(z)+2[1-3 tani(yz)]u(z), (8)

where we introduced a new variabke=/(a/2)x and res-

caled constanf)=(2/a)). We find the complete spectrum
of the kink excitations. The ground state is the following:

1 1/2

I a+§ a 1
Ug(X)= VW VE —a’
cosW( ny)

C)

where

1( /1+ 24 1)
o = _— .
2 )2

This solution exists for an arbitrary thin potential “hole,”
i.e., for ye[1l). The notation refers to the fact that in the
absence of the external potential it corresponds to the zero
mode[5]. The eigenvalué),=a/2(y?a—2) is equal to zero
only for y=1. We know that the zero mode is a manifesta-
tion of the translational symmetry of the system. In f&)g

=0 only if the system is not occupied by the impurities, i.e.,
for A=0. For A>0, the “energy” of this mode is positive
(>0. The next eigenfunction is a breather mode,

1 1/2
2

[ a
us(x)= 7(2a—1)m o
A\
sin ny

X (10
NE
cosW( ny)

This mode corresponds to the eigenvaldg=a/2[ y?(3«a

Let us consider time dependent solutions of the over-—1)—2]. The breather mode is separated by a gap from the

damped¢* model,

Tapp(t,X)=d2h(t,x) +ag(t,x) — N 3(t,x) + D(x). (7)

ground state. This mode exists in the system only for the
parameter rangeg e [1,4/3). Due to the fact thay describes
the thickness of the potential distribution it is obvious that
this mode exists only for a sufficiently wide potential hole.

We will focus on the small, time dependent, perturbations ofFinally, we also obtain the continuous spectrum of the eigen-

the kink solutiong(t,x) = ¢k s¢(X) + &(t,x). For simplicity,

functions
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12 " that the last inequality is fulfilled always foy>1. Let
@ E, us also notice that if IfN1—2am(y2a—2)/T2]#0,
then the excitations oscillate with the frequency
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a I'2\2am(y%a—2)/T'?—1/2m. The oscillations of “zero”
1—-tan zyx

Ug(x)=

y \ﬁ
27 V2
modes always appear ifyffa—2)>I?/2am. The breather
X\ —a,a+1;1-ik; 5 \ modes correspond to the exponents

“5 =2m

2am
L 23 —1)—
which corresponds to the eigenvalugg=a/2(4+ y?k?). 1= \/1 2 [y (B3a=1) 2])' (19
The modes of this type exists for arbitrary values of the
parameterye[10). The bound states are normalized to . . N
unity and the states that correspond to the continuum speg—-h(.a mpdes of this .type are stable jf(3a—1)-2>0,
trum are normalized so that which is always satisfied foye[1,4/3). The modes that
belong to the continuous spectrum

ocdxu*xu,x=6k—k’. 12

J;w (0O (x) = 8(k—K') (12 2 2am
Z% 1+ 1——2 (4+’y k ) (16)

In the particular example &f=2 and considering the lack of r

the external forcey=1, we recover(up to normalization

facton the result of Ref[5], are also stable, because the inequality¥#k?>0 is always
satisfied. Oscillations in these cases are also possible.

w

=1+

3ik tanhx— 3 tantx
1+Kk? ' V. THE KINK-ANTIKINK STATIC SOLUTION

1 1+Kk?
U(x) = 2 (k+i)(k+2)

We used the fact that for negative integers the expansion of Aftér the phase transitions in the pure medium the kink-
the hypergeometric function ,F;(—2,3:1—ik:[1 antikink pairs annihilate, leaving the system free of any de-

—tanh&)]/2) consists of a finite number of terms. fects. The situation in the medium populated by the impuri-
ties can be completely different. In the present section, the
exact kink-antikink solution is constructed. This simple ex-
ample shows that at the final stage of the phase transition the
kinks and antikinks can form a stable network. All the kinks

Let us also check the stability of the squeezed kink solu@nd antikinks belonging to this network are trapped by the
tion in the case of the equation of motion equipped with aimpurities. Let us consider a time independent equation of
term with the second time derivative of the order parametefmotion,

ikx

IV. INFLUENCE OF THE INERTIA FORCE
ON KINK STABILITY

maZ(t,x)+ T dip(t,x) = d2(t,X) +ae(t,x) —\ ¢3(t,x) — Rp(x)—ad(x)+ A3 (x)=D(X). (17)

+D(X). (13
We also choose the particular form of the impurity force

Similarly, as in the overdamped model, we consider smalbistribution:
perturbations of the kinkp(t,x) = ¢k sq(X) + &(t,x) located
at the zero position of the coordinate, i.e.xo=0. We adopt D(X) =D, (X)+D_(X) +D(X). (18)
perturbations of the forng(t,x)=e~(“/Dy(x). The number
of modes in this model is twice as much as in the over-
damped model. The modes in this model can be easily foun
One of the lowest exponents,

he first part of this distribution responsible for squeezing
he vortex at the positiory,

2 \/ 2am a| %2 sinhB(x—xo)
__ T (\Ra— D.(X)=Al-| ——. (19
o Zm( 1+=14/1 2 (Ya 2)), (14) +(X) N cosRB(x—xg)
corresponds to the zero mode of the overdamped model. Thene second part squeezes antikink at the position,
excitations of the kink are stable if Rg =0. The zero
mode Raw, =0 is present only in the case where the exter- a2
: ) . +

nal force A=0<vy=1 is absent. In this case, translational D_(x)=—A a M_ (20)
invariance of the model is restored. If, however, the external N costB(x+Xo)

force is present, thery>1 and for stability of the “zero”

modes we need Re1—2am(y’a—2)/T?]<1. This The last part of the force distribution is responsible for bal-
inequality is satisfied ify?a—2>0. It is easy to check ancing the kink-antikink interaction,
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lf— = =~ . N AT T 7 (ZSqu[X_Xo_e(t)]%(ﬁK sq(X_XO)+ \/2,8[—1

+F&(X—Xo) (1), (25)

0 /\ /’\ and the squeezed antikink

./ a
0.5 D(X) - solid line | f X DA sd X+ Xot €(1) ]~ Pa s((X+Xo) + \éﬁ[_l
' :
o e +FA(x+Xo)Je(t), (26)
s PR o " 4 . where ¢y = V(a/l2)Fx, ¢as=\(a/l2)F5. We consider

the complete dynamics given by the equation of motion
FIG. 2. The kink-antikink solutioridashed lingand the shape equipped with the inertia term
of the force distributior(solid line). Parameters chosen in this plot

are the followinga=1, A=1, xo=2, A=1. Ma; o (t,x) + T oy dp(t,x) = d5hp(t,X) +adp(t,x)
a) 32 —Ng3(tx)+D(x). (27)
Di(X)=3\| - tanhB(x—Xq) —tanhB(x+x
(%) ()\ [ Al o Al o)] First we perform expansion with respect to the small param-

eter Be<1. Next, we use the reflection symmetry- —x,
which allows us to restrict our considerations to perturba-
—tanhB(x— Xo)tanhB(x+Xo) 1. (21  tions of the position of the zero of the order parameter lo-
cated in the neighborhood of the poiy. At the final stage
In this setting the exact solution of the equation of motionof the calculus, we use approximate values of the functions

X[1+tanhB(x—Xg) —tanhB(x+Xq)

(17) is the following: Fk(0)=0 andF(2%g)~—1 in the vicinity of x,. The ef-
fective equation for the displacement of the positions of ze-
a a ros of the scalar field is just the damped oscillator equation
$p(X)= \[E tan)‘( \/;Y(X_Xo))
mdZe(t)+ T ae(t)+ (2 B2—a)e(t)=0. (28)

+11. (22) The oscillations are stable if the parameter preceding
positive, i.e., if3?>a/2. The last inequality can be written in
the form y>1, or equivalently4>0. We see that if the
configuration is placed in nonzero force then the excited
kink-antikink solution relaxes to the static one. The way of

this relaxation is described by the textbook solution

NG
—tan Ey(x+ Xo)

This solution is just a superposition of the kink and antikink
located at the zeros of the force distribution

a
¢D(X):¢K Sq(X_XO)+ ¢A sq(X+XO)+ \/; (23) E(t):Bef(FIZm)tcosmt_’_qo), (29)
This solution represents the kink and antikink trapped by thevhere the frequency of the oscillations is given
neighboring impurity centeréee Fig. 2 by the potential parameter3 as follows: w
=TI'\[4m(2 B*—a)/T?]—1/2m. The main reason of the
VL. STABILITY OF THE KINK-ANTIKINK SOLUTION stabilization of the solution is an existence of the gradients of

) the potential in the vicinity of the positions of zeros of the
We know that the squeezed kink as well as the squeezegkder parameter.

antikink are stable against small perturbations. The only in-
stability of the kink-antikink solution can be introduced by a
change in their relative position. Because of the symmetry of
the force distribution, we consider the following perturbation We considered simple examples of the exact solutions of
of the kink-antikink solution: ¢* in the presence of external forces. The solutions illustrate
the main features of the defect production in the systems
\ﬁ 2 2 populated by the impurities. We know that according to the
$o(t,X)~ dp(X) + \[{IFk(X=X0) + Fa(x+%0) =2]Be(t),  zyrek scenario the density of defects produced during the
(24) phase transition of the second type is mainly determined by
the correlation length at the freeze-out time. The correlation
wheree(t) is a small displacement of zeros from their posi- length at that instant of time intuitively describes the size of
tion predicted by the exact solutidi22). The approximate the defect, and therefore the number density of defects is
form of the kink-antikink solution follows from the expan- limited by the possibility of holding the kinks in the unit
sion of the squeezed kink volume. It was showed that the squeezed kink or antikink

VIl. REMARKS
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solutions can have a size much smaller than the kink solulet us turn to the question whether the squeezed solutions
tions in the absence of the external forces. This seems to kexist in higher number of spatial dimensions. dnspatial
a cause of the possible changes in the density of producedimensionsO(d) symmetric system is described by the
defects. equations of motion

On the other hand, one could raise the question of
whether the existence of the squeezed solutions is a generic 22¢p2(t,X) + T 9,p%(1,X) = A ¢2(t,X) + ad?(t,X)
feature of the model equipped in any external force distribu-
tion or is it only the unusual coincidence of the force distri- ~ NP Pp2(t,x).  (30)
bution parameters? Let us assume that an arbitrary potential ) )
is described by some unknown function. The force distribu-/& @ssume that the number of real scalar fields in the model
tion that is the first derivative of the potential disappears infS identical to a number of spatial dimensions, i.a.,
extremes of the potential. On the other hand, in the vicinity= 12 - - - d. This assumption guarantees existence of
of zeros of the force distribution nonzero gradients of the"€dgehog solutions in the model. In two dimensions, we
potential exists. These gradients corresponds to the forcd¥ve the vortex solutionpy=¢{(x), and in three spatial
acting on kinks located in considered areas. In these settingdimensions the global monopole solution exisisy
considerable amount of the knots of the force distribution= ¢y (X). In the presence of the external force distribution
attract kinks. In a system equipped with a dissipation termpa(t,{(’), this equation has the form
the movement of kinks, in the vicinity of the knot of the
force distribution, is damped. The final state of this evolution F2P2(1,X) + T d;d%(t,X) = A p2(t,X) + ad?(t,X)
is a static kinklike solution that differs from the squeezed
kink by the local distortion of the profile of the squeezed —N(PPP) p(t,X) + D2(t,X).
kink. This distortion is a consequence of the difference be-
tween considered force distribution and the force distribution (32)

described in Sec. II. _ __In two dimensions, the squeezed vorticesy i,(X)
The second important feature of the influence of the im-_ 42,y exist for particular force distribution of the impu-

purities on the evolution of the defect network is exempllfledrity Da(x)=B(alx— ¢20) 4. The explicit form of this

by the kink-antikink solution. We know that in pure SyStems, yiq i tion s not known because we also do not know the

due to kink-antikink interactions at a sufficiently late mstantexplicit form of the vortex solution. The squeezing factor this

of time, the defects disappear. from the system _completely. Ilﬂme is a combination of the constants characterizing the self-
the case of the system occupied by the impurities, due to th oupling of the scalar fields and the impurity strength

dissipation in the system, the surplus of the energy is lost and (B\). Similarly, in the three-dimensional case, the
the system approaches the configuration that consists of de- "\  a _ ,a ’
fects oscillating around the impurity centers. squeez_ed . mo_nopo;eaﬁM s = ‘f’Mf)VXB, agpear for the

We know that in pure systems, due to the annihilation offﬁrci dlstr|.but|ofnﬁ7 (X)_[fj(al/}\'_ Pw (.b'\")d"\" a.More(.)veri
defects and antidefects, the initial density of the defect nettn€ ynamics o these MOCEIS 1S, as In one-dimensionaf sys-
work is quickly reduced in time. In fact, at this stage of [€MS: determined by gradients of the potential. In two and
evolution the nucleation is also possible but it is determined€€ dimensions we also can expect that gradients of an
by the Boltzman factof6]. In contradiction to pure systems, arbitrary potential could respond not only for confining, but

kinks produced in the systems populated by impurities ar@Iso for local change of the profile of the vortex or monopole

confined by the impurity centers and therefore may not disSolutions. The dissipation in the system stabilizes the defects
appear from the system completely. confined by the impurities. The number density of defects

It is worth emphasizing that the considerations of thisirapped by the i_mpurities iP this_case is determined by the
paper concern the shape of possible field configurations verage separation of the impurity centers. The presence of

the order parameter in the broken symmetry phase o#the g e Ign%th Sc?le fOf thg imgudrit%/ distr.ibution indtk;]e numbe_rl
model and not the phase transition itself. Although the dy-A€nSity formula of produced defects, in two and three spatia

namics of the transition introduces some complications tCﬁlmensmns, can also be confirmed in the framework of the

this picture, the main features of the presented picture will<IiPPle-Zurek scenarig7].
surely survive even if the complete transition process will be
taken in to account.

The next issue concerns the possible applicability of the This study was supported in part by ESF COSLAB
obtained results to two- and three-dimensional systems. FirsBrogramme.
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